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ABSTRACT

A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass

transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The

flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results

were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude)

between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed

and their dependency on the flow frequency and amplitude discussed. An assessment of the validity

of the quasi-steady assumption for mass transfer is based on these results.

INTRODUCTION

It is known that under certain conditions the rates of heat and mass transfer are enhanced by the

oscillation of the surrounding fluid (Richardson, 1967). This phenomenon is useful in pulsed

combustion (Sabnis and Lyman, 1982; Nag and Mukherjee, 1975), drying (Lockwood, 1980), and

absorption of high-intensity sound in particle-laden flows (Lyman, 1976; Scott, 1975). Of practical

interest is the specific range of Reynolds and Strouhal numbers under which increases in heat

and mass transfer can be expected to occur.

Previously, solutions of the flow and mass transfer problems for a sphere in oscillatory flow

have been obtained by perturbation techniques for the case in which the fluid displacement

amplitude, A, is much smaller than the sphere diameter, d (Burdukov and Nakoryakov, 1965;

Riley, 1966). In this limit, transport of heat and mass are dominated by acoustic streaming. In the

opposite limit, Aid > > 1, one may use available analytical or experimental results for steady

flow and mass transfer, assuming that at each instant a quasi-steady state exists. But in many cases

of technological importance, Aid is of order one, and there are no analytical results for that

problem.



The experimental data for mass transfer from spheres were reviewed fourteen years ago

by A1-Taweel and Landau (1976), who summarized the numerous Sherwood correlation formulae

and attempted a more rational classification of them based (in part) on the A/d ratio. A1-Taweel

and Landau suggested that the Sherwood number be correlated with a relation appropriate for

acoutic streaming whenA/d < < 1, and that a quasi-steady Sherwood number correlation be used

for A/d > 0. 75. There is, of course, no reason to expect an abrupt transition at this particular

value of A/d, and the choice of 0.75 was somewhat arbitrary and based on limited data. Fur-

thermore, the data reviewed were for relatively high Reynolds numbers, because it was convenient

to use spheres with diameters on the order of centimeters. For small particles, however, the

Reynolds numbers are smaller, and the effect of vibrations on heat and mass transfer at low and

moderate Reynolds numbers has received little attention.

The present work was undertaken in order to calculate the rate of mass transferlfrom a

solid sphere to an oscillating flow in the intermediate range of Aid (0.1 < A/d< 2) and to

investigate the transition from acoustic streaming to quasi-steady transport. This work was

intended to complement an experimental program at Syracuse University on combustion of and

mass transfer from solid spheres in oscillating flows (Sabnis and Lyman, 1982; Drummond, 1981).

The experimental results indicated that an enhancement in burning rate of spherical coal particles

was a function of A/d alone up toA/d = 0.94, whereas the data for mass transfer from sublimating

naphthalene spheres, corresponding to A/d< 0.48, were best correlated by a dimensionless

variable appropriate for acoustic streaming

According to dimensional analysis, the Sherwood number can be expressed as a function

of Aid (which is the reciprocal of the Strouhal number), the Reynolds number based on the

amplitude of the oscillating velocity, and the Schmidt number. Since Schmidt numbers for diffusion

into gases (the medium of interest here) are of order one, the most important parameters are the

Strouhal and Reynolds numbers. The objective of the present work is to determine the dependence

of the Sherwood number on these parameters by numerical solution of the Navier-Stokes and

mass transport equations for oscillating flow around a sphere.

FORMULATION OF THE PROBLEM

The analysis of the unsteady transport problem is simplified by the assumptions that the gas flow

is laminar, incompressible, andaxisYmmetric about the sphere's polar axis 2, and that the gas and

sublimand-laden vapor each behave according to the ideal gas law. The flow field is assumed

1 Computations were also carried out for heat transfer, but to save space the results will not be presented here.

2 It has been observed by Taneda(1956) that even when the flow upstream of a sphere is steady, when the Reynolds
number is greater than 130, the flow is no longer axisymmetrical.
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unaffected by the sublimand motion. The particle temperature is spatially uniform and inde-

pendent of time, as also are the fluid properties. The effect of natural convection on the transport

process is not incorporated in the present problem formulation, but this does not imply the flow

is assumed spherically symmetric.

The vorticity transport equation is used to describe the flow field, and only the azimuthal

component of vorticity is non-zero for an axisymmetric flow. It is convenient in the numerical

analysis to introduce a modified vorticity

_ =-exp(z)_sinO (1)

where _ is the dimensionless vorticity, related to the dimensional vorticity _ *, sphere radius a and

free-stream velocity amplitude U 1 by

_=_'a/U1 (2)

and z is the contracted radial variable

z=ln(r/u) (3)

When written in terms of these dimensionless and modified variables, the vorticity transport

equation is (see Lin and Lee, 1973):

where:

and

MZb_ Reexp(-3z)(b1)(b_ ) b1)(c_ )14 b_- 2" s-_n0 \_-_z\_-_-2_jcot0 -_-_,_-2_ +exp(-2z)D_j (4)

1) = 1)'lU_u z (9)

and satisfies the equation

Here, 1) is the streamfunction, defined as

b2 b b2 b
D 2= +---cot0-- (8)

_Z 2 bZ b0 2 c_0

M 2 = Re. St (5)

Re= 2U_u/v (6)

St = 2u_lU_ (7)



D2_ = _exp(2z) (lO)

The dimensionless form of the mass transport equation is (see Chuchottaworn et. al., 1984):

+ ..... +--+--+cote (11)
2 37: sin0 303z az30J -_e-Sc az 2 3z c)Oz

where Y is the concentration of the sublimand divided by the value at the surface, Sc = v/1:) is

the Schmidt number, and D is the diffusion coefficient.

Initial and boundary conditions on the solution in the physical domain (0 _<z _<z ®) shown

in Fig.la are:

1:=0: ap=_=O (12a)

Y=O 0<z_<z® (126)

Y= 1 z=O (12c)

d_p 0, 0<z<z® (12d)o=o,_: _ = _= d---_=

V=O (12e)

= (bZaplc_zZ)_.o (12[)

×= ] (]2g)

i
z = z=: _ = _exp(2z=)sin20sin X (12h)

_=0 (12i)

Y=O (12j)

Note in Eq.(12 0 the absence of the term a W / a z since v = 0 at z = 0.

NUMERICAL METHOD

In the present work the vorticity and mass transport equations are integrated using a combination

of the pseudo-spectral and finite-difference methods. The implementation of the pseudo-spectral

method (PSM) in this work involves expressing the angular dependence of the streamfunction,

vorticity, and species concentration in terms of a truncated Fourier cosine series. Finite differences

are used to represent the radial and time derivatives.



The assumedfunctions for 11)andTare expandedin Fourier serieson the sphere as follows

(Orszag, 1974):

= cosnO (13)
_(z,O,_) J ,.o °(z,'t)

These series automatically satisfy the boundary conditions along the polar axis. When the series

in Eq.(13) are truncated at n -- N - 1 and evaluated at the polar angle 0_ , one obtains:

/ /Vk = W(z,Ok,T) =sin _. (z 1:)_ [_(z,O_,x)) 20k.-o . , cosnOk (14)

The set of coefficients Fn(z,-c ) and Gn(z,-c ) represent W and _, respectively, in spectral

space. The transformation between physical space and spectral space is achieved by first selecting

a set of evenly spaced collocation points in the polar angle 0 (Figure 1),

Ok= k+_ , O<_k<_N - 1 (15)

where N = rt/A O. The purpose of the shift by rt/2 N is to avoid numerical problems

associated with the coefficient 1 / sin 0 in Eqs.(4) and (11). The coefficients in Eq.(14) are

determined by the usual inversion of a Fourier series (Gottlieb and Orszag, 1977)

- (16)

where

6n= 2, n=

1, n>

(17)

This result is used to compute the necessary derivatives and their products in the vorticity transport

equation, shown in Eqn.(4). The z - derivatives are approximated by second-order central dif-

ference expressions. When a first-order forward difference is used for the time derivative in

Eqn.(4), then the vorticity transport equation can be written in the form

_j_'zx_-_T=(_Aa:A(_j_+A_) + (I-(z)ATA(_j _) (18)

where A (_) represents the remaining terms in the equation. For ct = 0 the solution is explicit,

when ct e O, implicit. Although test calculations were performed using explicit and implicit



methods,anexplicit method wasusedfor the resultspresentedin the presentwork. The reason
for this was that the value of the weighting factor for convergencechangedwith time; a factor

found to be beneficial at the start of a cyclewaspotentially detrimental at later times.

The spectralrepresentationof Eq.(i0) is givenby Orszag(1974):

32F 3F. 6 Nv:'l

G_exp(2z)- 3z 2" 3z F_(l+n)(2+n)---8_ ;-..22- PFv (19)

As before, second-order central difference formulas are used for the z - derivatives. Equation

(19) is used to establish the interior values ofF n at the new time step from the (known) boundary

values ofF n and the interior G n at the new time step. An iterative solution was used to solve the

resultant matrix equations. No weighting factors were used to accelerate convergence. The

solution was assumed to have converged when the difference in the maximum value of F n was

less than 0.005 from one time step to the next (an error on the order of 0.05% to 0.1%); this

typically required between 5 and 50 iterations.

Boundary conditions on the sphere surface and in the free stream are enforced with finite

differences as shown, for example, in Gottlieb and Orszag (1977). Special attention is drawn to

the representation of the vorticity boundary condition at the wall, which in this work is given by

_l,k--_P0.k (20)
I_-0 2A Z

Other finite difference approximations for the vorticity boundary condition at the wall were

considered (Roache, 1977; Drummond, 1985), but convergence difficulties were experienced with

them.

The normalized concentration variable is given by

N-!

Y(z,0,_)= _ W.(z,_)cosn0_ (21)
n-0

The derivatives of Y required in Eq.(11) are obtained from Eq.(21). Since the computational grid

for Y remains unchanged from Fig. 1, the coefficients W n are computed from

N-1

_ 2 _ Y(z 0 "t:)cosn0 k (22)
h/n NSnk.o , k,



Substitution of Eq.(21) into Eq.(ll) yields the following expression for the mass transport

equation. Again, second-order central differences are used for the z - derivatives, and a first-order

forward difference used for the time derivative. Once those substitutions have been made, Eq.(11)

can be written in the form:

y._÷A._ _ y._ = [3(A.t)L(y-_÷zx-_) + ( 1 - [3)A'c L (Y _) (24)

The conditions on Y at the sphere surface and in the free-stream are:

Yo,k = 1,0<k< N-1 (24a)

YM,k=O,O<k< N - 1 (24b)

The boundary conditions along the polar axis are automatically satisfied by the assumed angular

dependence of Eq.(21).

We summarize the hydrodynamic and species transport solution procedure selected for use

in the present work as follows:

1. Establish the computational mesh with 0 from Eq.(15).

2. Establish initial values of _, _, Y

3. Compute F n and G n using Eq.(16).

4. Calculate interior values of _ at -_ + A z from the vorticity transport equation, Eq.(18)

5. Compute new values of W at -c + A-c from Poissons equation, Eq.(19)

6. Compute new boundary values of _ from the new interior apk

7. Compute new Y at "c + A a; from the mass transport equation.

8. Repeat steps 3-7 until the solution has converged.

In the explicit calculation procedure of the present work the value of the dimensionless time step

was 0.02. The convergence criterion for mass transfer calculations is discussedbelow.

RESULTS

A series of steady flow calculations were made to test the pseudo-spectral code before it was

applied to oscillating flow. A drag coefficient of 1.928 for Re = 40 computed by the PSM on a 31

x 30 grid with Az = 0.07, A 0 = 6 o, and z _= 2.1, compared favorably with the 1.805 value from

the FDM work of Lin and Lee (1973) with Az = 0.1, A0 = 6 o, and z_= 3.0. The surface average

Sherwood number computed by the PSM was 7.34 for Re=40 and Sc=2.54, which compares

reasonably well with the value of 7.65 computed from the correlation of Chuchottaworn et. at.



(1984). More detailed comparisons are given in Drummond(1985), and a recent discussion of

steady flow drag correlations provided in the work of Oliver and Chung (1987). The intent of

these computations was simply to compare results of the PSM code to those of the FDM for

comparable grids.

Streamfunction

Oscillating flow computations were made for a vibrational Reynolds numbers (Reynolds

numbers based on the free-stream velocity, Eq.6) ranging between i and 150, and for Strouhal

numbers between 1 and 1000. A typical sequence of the computed instantaneous streamlines is

shown in Fig. 2. The lack of published data on the streamfunction or vorticity made an exact

comparison of the results impossible, but the streamlines are qualitatively similar to the results

of Obakata et. a1.(1978) for unsteady flow around a cylinder.

It appears the pseudo-spectral method of analysis of the present work is quite effective

since the results of Fig.2 were obtained with a 21 x 15 grid (Az = 0.1, A0 = 12 o, z.,= 2.0). Several

computer runs were made to investigate the time dependence of the results on grid size. Typical

results for unsteady flow cases were as follows: the value of the streamfunction at z = 0.2, 0 =

90 ° , and 1: = 1.0 dropped by 4.6% when z ® was extended from 2.0 to 3.5, and it decreased by

3.1% when A0 was reduced from 12 ° to 60. 3

Fig.3 illustrates the result obtained by time averaging the streamfunction over one period

and is a clear indication of the presence of secondary streaming. Since A/d in Fig. 3 is equal to

1.0 and the Reynolds number equal to 20, we do not obtain a streaming pattern similar to the

results of Riley(1966) whose analysis was for small-amplitude flows (Aid < < 1) at Iow (M 2 < <

1) or high (M 2 > > 1) frequencies. Although Fig.3 is for M 2 -- 20, the inner streaming layer is

not confined to a region dose to the surface. _is maybe attributed to the fact that A/d is not

small. The lines from the center of the sphere to the centers of the closed W loops in Fig.3 occur

at angles of 45 ° to 53 ° from the axis of oscillation and radial distances r/a between 2.3 and 2.5.

Lane(1955) calculated that forA/d < < 1 the center of the inner vortex was at 54043 , and r/a =

1.3, although he cautioned that his streamfunction plots, while accurate in the O-direction, were

very poor approximations in the r-coordinate.

3 As expected, integral quantities are less affected by these grid variations; the surface average Sherwood number, for
instance, varied on the order of 0.25% for the grid extremes described. Given the emphasis on mass transfer for the
present study, and the fact that the f'mer grid was 3.5 times more CPU intensive, the 15x21 grid was used for most of
computations in the present work.
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Mass Fraction Contours

Mass fraction contours are shown in Fig.4 at various times over two periods of the free-

stream velocity, for Re = 100 and St = 1. Similar mass fraction contours were obtained for Re

between 10 and 100 and St between 0.5 and 10.

Surface-Average Sherwood Number

The surface average Sherwood number is computed from:

fo_( aY ) sinOdO (25)Sh = - -_z _-o

Fig.5 illustrates the time dependence ofSh forA/d = 1 and various Re for -c between 0 and 12.

Because the initial conditions specify Y = 0 everywhere except at z = 0, there are initially large

gradients of Yat the surface. This is reflected in very high values of Sh for 0 < 1: < 1. The same is

true for the case ofA/d = 0.1, shown in Fig.6. The clear difference in the time dependence of Sh

for Aid = 1 and Aid = 0.1 for 1: > 2.0 suggests a different mechanism governing mass transport.

The oscillatory nature of the Sherwood number in Fig.5 reinforces the idea that at largeA/d mass

transfer is controlled primarily by the oscillatory flow. Conversely, the profiles of Fig.6 suggest a

mass transfer mechanism independent of the primary oscillatory flow, namely that of acoustic

streaming. In both cases the effect of Re seems to be primarily to shift the curves to higher or

lower Sh as opposed to being responsible for any change in the basic mechanism for mass transfer.

The transition in the nature of the time dependence of Sh is easier to see when Re is fixed

andA/d varied. For the case Re=20 and 0.1 < Aid < 1, Fig.7 clearly shows the transition from

mass transfer controlled by acoustic streaming (A/d=O.1) to mass transfer controlled by the

primary oscillatory flow (Aid = 1.0). It is not possible to discern from these curves a value of Aid

at which the transition occurs. The transition point is best identified from the time-averaged

results, as discussed below.

It is necessary to obtain time-asymptotic values of Sh in order to compare the results of

numerical analysis with predictions of published correlations. Also, since the latter invariably

refer to time-averaged mass transfer rates, the time-dependent Sherwood was time-averaged over

a period of the free-stream flow oscillation which was sufficiently long after startup so that the

starting transient had died out. This procedure was followed regardless of whether the mass

transfer process was quasi-steady or due to acoustic streaming. Since the difference in the time

averages of the Sherwood number over the ninth and tenth cycles was typically on the order of

one percent, the average of the tenth cycle is reported here.
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Fig.8 presents the time-averaged Sherwood number as a function of Aid for various

Reynolds numbers from 1 to 150. The break in each curve corresponds to the transition from

acoustic streaming to quasi-steady mass transfer. This occurs at values of A/d between 0.1 and

0.25, considerably lower than the value of 0.75 chosen by A-Taweel and Landau (1976). Also, the

A/d at which this transition takes place depends on Reynolds number: at Re = 1 it happens at

Aid = 0.1, whereas at the higher values Re -- 40, 100 and 150 it occurs atA/d = 0.25, independent

of Re.

COMPARISON WITH EARLIER WORK AND DISCUSSION

The time-averaged Sherwood number decreases with increasing Aid at smallA/d. This behavior

is opposite to that predicted theoretically by Burdukov and Nakoryakov (1965) from a

boundary-layer analysis in the limit A/d -_ 0 such that M 2 > > 1. In that limit there is a Stokes

shear layer of thickness 5 = _ = d / M at the surface, as well as a steady acoustic streaming

boundary layer of the same thickness. Burdukov and Nakoryakov consider mass transfer due to

acoustic streaming only and use the steady velocity at the outer edge of the boundary layer to

calculate the convection terms in the convective diffusion equation. Their result for the average

Sherwood number over the surface of the sphere can be written

sh = = Sc. A/a

where C 1 is a constant of order one 4. Although the result is written in terms of A/d in the second

expression, following A1-Taweel and Landau (1976), this is somewhat misleading, because there

iS aciually no dependenceon the sphere diameter. _e important parameter in this limiting case

is the Reynolds number of the streaming flow

Re_t r = U_/oav = Re. A/ct

In a thorough review of oscillatory flows Riley (1967) pointed out that one must carefully

distinguish between various possible limiting cases as Aid _ O. The analysis of Burdukov and

Nakoryakov (1965) is not very clear on this point but evidently corresponds to taking the limit in

such a way that Rest r remains finite. According to the above expression for Rest r, this implies that

Re -) o_ as Aid -_ O. The physical relevance of this limit is difficult to imagine, because the

assumptions of axisymmetric and laminar flow would be invalid at high Re.

The present computations were intended to indicate the transition from acoustic streaming

to quasi-steady mass transfer at finiteA/d rather than to investigate the limitA/d _0. One reason

for this is the impossibility of resolving the inner boundary layer when M > > 1 without using a

4 Burdukov and Nakoryakov (1%5) give C1 --- 1.3, but there appears to be an error in their calculation of the average
over the surface of the sphere. The correct value is C 1 = 1.89.
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radial grid spacing for which the computations would become prohibitively expensive. Never-

theless, the computations were carried out down to A/d= 0.001 (St = 1000), but for f_ed Re.

This corresponds to the physically realizable situation in which the frequency is increased while

the velocity amplitude U1, sphere diameter and viscosity are held constant. But since Rest r -+ oo

as Aid _ 0 at fixed Re, this limit is quite different from that considered by Burdukov and

Nakoryakov, so the computed Sherwood number has a different dependence on Aid.

Burdukov and Nakoryakov (1965) also conducted experiments in which camphor balls were

exposed to high-intensity, high-frequency acoustic waves. In these experiments Aid was on the

order of 0.05 and Reynolds numbers were on the order of 500. Good agreement between theory

and experiment was claimed, but when the correct value C 1 = 1.89 is used the agreement is poor.

Padmanabha, Nair, and Ramachandran (1970) measured mass transfer from vertically

vibrating naphthalene spheres to air for 0.375 < Aid < 0.875 and 200 < Re < 2000. Their

recommended correlation is

,._h = 0.63Re°'64(A/d) 0"63

Scatter in the data at low Reynolds number casts doubt on the specific A/d dependence for Re

below 300, however. Since the Reynolds number in their experiments and those of Burdukov and

Nakoryakov (1965) are well beyond the range 1 < Re < 150 of the present computations, it is

not possible to make a direct comparison of our results with experiment. In the experiments of

Drummond (1981) it was found necessary to provide a steady as well as an oscillatory component

of velocity of the air flow to prevent build-up of sublimand in the test section. Since the steady

flow introduces additional complications, it was decided to limit the computations to the case of

zero mean velocity.
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CONCLUSIONS

Computations of the flow about and mass transfer from a sphere in oscillatory unsteady flow were

carried out with the pseudo-spectal method for values of the Strouhal number between 1 and

1000 (Aid from 0.001 to 1). The purpose was to obtain accurate solutions of the full Navier-Stokes

and convective diffusion equations without the approximations inherent in previous analyses,

which were valid only in the limit Aid < < 1. Since the velocity of the steady secondary flow

(acoustic streaming) is typically an order of magnitude less than the primary flow velocity, an

indication of the accuracy of the present method is the fact that the time-average of the instan-

taneous streamfunction gives a flow pattern resembling those calculated or experimentally

observed by others. There are still some discrepancies, however, such as the departure of the

= 0 streamline from 0 = 0 and 90 °. In the present work the centers of the inner vortex of the

streaming pattern for St = I occur at an angle of approximately 50 degrees to the axis of oscillation,

corresponding well with the theoretical results of Lane(1955) for Aid < < 1.

To summarize, the effects of the displacement amplitude A, velocity amplitude U1, and

frequency co of the oscillatory flow on mass transfer from a sphere of diameter d are as follows:

1. For a fixed A/d, mass transfer increases as the Reynolds number U 1 d / v of the

oscillatory flow increases. (This case corresponds to a flow driven by an oscillating

piston with fixed stroke but variable frequency).

2. At a fixed Reynolds number, mass transfer decreases as Aid increases (or

decreases). AboveA/d = 0.25 mass transfer is virtually independent of A/d, at least

for the range of Reynolds number considered here (1 < Re < 150).
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FIGURE 2. - UNSTEADY FLOW STREA/4LINESFOR AN OSCILLATORY FLOW ABOUT A SPHERE FOR Re = U1d/u = 100,

St = ud/U1 FOR VARIOUS VALUES OF THE DIMENSIONLESS TIRE T ; _t. FREE-STREN4 VIZLOCIIYU,,o= Ul sin T.

FLOW STARTED FORM REST AT T = O, GRID: _z = 0.1, z_ = 2.0, A8 = 12°. TIRE STEP: _T = 0.02.
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FIGURE 3. - TIME AVERAGED STREAMFUNCTION_ FOR Re = 20 AND St = I,

NOTE THAT A/d = U1/ud = 1,0 (NOT << 1).
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FIGURE q. - UNSTEADY FLOW MASS FRACTION CONCENTRATION CONTOURS FOR OSCILLATORY FLOW AROUND A SPHERE.

OTHER CONDITIONS SAME AS FIGURE 2.
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FIGURE 5. - SURFACEAVERAGESHERWOODNUMBERAS A FUNCTION

OF DIMENSIONLESSTIME T FOR A/d = 1.0 AND VARIOUSVIBRA-

TIONAL REYNOLDSNUMBERSRe = Uld/U.
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FIGURE 6. - SURFACE AVERAGE SHERWOOD NUMBER AS A FUNCTION OF

DIMENSIONLESS TIME T FOR Aid = 0.1 AND VARIOUS VIBRATIONAL

REYNOLDS NUMBERS Re = U1d/_.
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FIGURE 7. - SURFACE AVERAGE SHERWOOD NUMBER AS A FUNCTION OF

DIMENSIONLESS TIME _" FOR A VIBRATIONAL REYNOLDS NUMBERS

R = 40 AND VARIOUS AMPLITUDE/DIAMETER RATIOS A/d = U1/_d
= 1/St.
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FIGURE 8. - SURFACE AVERAGE SHERWOOD,NUMBER COMPUTED FROM THE PSEUDO-SPECTRAL

METHOD FOR VARIOUS VIBRATIONAL REYNOLDS NUMBERS AND A/d RATIOS.

19



Report Documentation Page
National Aeronautics and
Space Administration

1. Report No. 2. Government Accession No. 3. Reclplent's Catalog No.

NASA TM- 102566

4. Title and Subtitle

Mass Transfer From a Sphere in an Oscillating

Flow With Zero Mean Velocity

7, Author(s)

Colin K. Drummond and Frederic A. Lyman

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

5. Report Date

April 1990

6. Performing Organization Code

8. Performing Organization Report No.

E-5202

10. Work Unit No.

505-62-71

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Colin K. Drummond, NASA Lewis Research Center; Frederic A. Lyman, Department of Mechanical and

Aerospace Engineering, Syracuse University, Syracuse, New York 13244.

16. Abstract

A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for

a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric

about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-

stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood
numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of

the validity of the quasi-steady assumption for mass transfer is based on these results.

17. Key Words (Suggested by Author(s))

Fluid dynamics

Unsteady flow

Pseudospectral method

18. Distribution Statement

Unclassified - Unlimited

Subject Category 34

19. Security Classif. (of this report) ] 20. Security Classif. (of this page) 21. No. of pages 22. Price*

Unclassified [ Unclassified 20 A02

NASAFORM1626OCTa6 *For sale by the National Technical Information Service, Springfield, Virginia 22161


